We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Proton Exchange Membrane Fuel Cell?

By Allan Robinson
Updated May 17, 2024
Our promise to you
WiseGeek is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGeek, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

A proton exchange membrane fuel cell (PEMFC) is a fuel cell that uses hydrogen and oxygen to liberate electrical energy. Its distinguishing feature is an electrolyte membrane called a membrane electrode assembly (MEA) that allows the passage of protons but not electrons. A proton exchange membrane fuel cell has potential applications as both a stationary and portable fuel cell.

An MEA has an anode side and a cathode side. An electrical current flows into the MEA's anode side and out of its cathode side. A proton exchange membrane fuel cell delivers hydrogen gas to the MEA's anode side, which splits the hydrogen atoms into electrons and protons, a process that can be shown by an equation: H2 -> 2e- + 2H+. The protons in this reaction travel through the MEA to its cathode side, and the electrons pass to the MEA's cathode side through an external circuit. The combination of these processes creates an electrical current.

A proton exchange membrane fuel cell also delivers oxygen gas to the MEA’s cathode side. If the molecules of diatomic oxygen (O2) can be split into oxygen atoms, the protons traveling through the MEA can react with these oxygen atoms to form molecules of water. This reaction also can be shown by an equation: O + 2H+ + 2e- -> H2O.

The MEA must meet several criteria in order to produce electricity. It can’t allow hydrogen or oxygen gas to travel through it. The MEA must also be able to resist the oxidative effect on the anode side and the reducing effect on the cathode side.

Platinum catalysts can be used to split hydrogen molecules with relative ease. Splitting oxygen molecules with platinum catalysts, however, produces significant electrical losses. An additional problem with platinum catalysts is that a very small amount of carbon dioxide will significantly degrade their performance. Scientists had not discovered a practical catalyst for splitting oxygen molecules as of 2010, but a catalyst composed of carbon, iron and nitrogen had shown the most promise. The primary difficulty with this catalyst is that its reaction rate drops quickly over a short period of time.

Water also causes electrical losses in a proton exchange membrane fuel cell. The fuel cell must prevent excess water from flooding the MEA but allow enough water to keep the MEA from drying out. Water management in a proton exchange membrane fuel cell is difficult, because the water is attracted to the cathode side of the MEA. Electro osmotic pumps are one possible solution to this problem.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.