We are independent & ad-supported. We may earn a commission for purchases made through our links.

Advertiser Disclosure

Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.

How We Make Money

We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently from our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is the Serial Line Internet Protocol?

By Kurt Inman
Updated May 17, 2024
Our promise to you
WiseGEEK is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGEEK, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

The Serial Line Internet Protocol, also known by the acronym SLIP, is a means of sending Internet Protocol datagrams over a serial link. It transmits each byte of a packet, adding one or more unique marker bytes to the stream as needed. SLIP can be used by two systems to communicate via a direct cable connection or modem link. Most personal computers use Point-to-Point Protocol (PPP) instead, but SLIP is often used where very low overhead is required.

When transmitting a datagram, the Serial Line Internet Protocol may send an "end" marker byte over the serial link first. It then sends each byte of the packet, unless it is one of two decimal values: 219 or 192. If it is 192, the end marker value, SLIP sends two special bytes in its place; 219 followed by 220. If it is 219, SLIP sends a different two-byte code—219 followed by 221. Once all bytes of the Internet Protocol packet have been sent, SLIP transmits the 192 end marker byte.

When a packet is being received by SLIP, it removes the end markers and replaces any special byte pairs with their original values. Some implementations of SLIP may also remove zero-length packets. The resulting datagram, if any, is then passed to the next network layer with no further analysis. Error detection and correction is left to the next layer, which must request a packet re-transmission if an error is discovered.

The SLIP specification was released by the Internet Engineering Task Force (IETF) in 1988 as Request For Comments (RFC) 1055. It identifies several SLIP shortcomings, including error handling and lack of control messages. Another common problem with Serial Line Internet Protocol is that there is no packet protocol identification. Since SLIP was only designed to handle Internet Protocol datagrams, this may not be a frequent problem. SLIP is quite capable of handling multiple Internet protocols, however, given a means to identify them.

Lack of security is another consideration for using Serial Line Internet Protocol. There is no mechanism for connection authentication or any sort of data encryption at this layer with SLIP. There is also no means of Internet Protocol address discovery for routing at the next network layer. With regard to maximum packet size, the SLIP specification is vague, suggesting a limit used by another implementation.

The Serial Line Internet Protocol does not compress any packet data, although the modem on the serial link will, if a modem is in use. Compressed SLIP (CSLIP), defined in 1990 by RFC 1144, does make an effort in this direction. It shrinks the Transmission Control Protocol (TCP) header of each packet to seven bytes from the original 20. The rest of the packet remains unchanged, however. In 1994, PPP—defined in RFC 1661—was created as a new robust protocol that resolved many SLIP issues.

WiseGEEK is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Discussion Comments

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGEEK, in your inbox

Our latest articles, guides, and more, delivered daily.