We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Engineering

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is ITER?

Michael Anissimov
By
Updated: May 17, 2024

ITER used to be short for International Thermonuclear Experimental Reactor, an international project to push the limits of fusion energy. The long name was ultimately dropped due to the negative public connotations of the word "thermonuclear," so the project is now known as just "ITER," which also means "journey" or "way" in Latin. The project is a consortium of seven national and supranational parties: the European Union (EU), India, Japan, People's Republic of China, Russia, South Korea, and the US. Brazil will also participate, using Portugal's role in the European Union as a proxy.

The object of ITER is to produce a sustained fusion reaction, one that generates 500 megawatts for up to 1000 seconds. In comparison, the last major international fusion project, the Joint European Torus, produced about 16 megawatts of power for less than a second. As of 2009, ITER is currently under construction for a cost of about $9.3 US billion, and is expected to be completed by 2018 and operate for 20 additional years, until 2038. If ITER is successful, it could be the first fusion power plant that produces more power than it consumes, though the heat generated in its core will not be used for electricity generation -- its purpose is only experimental.

Fusion energy works by fusing together light atomic nuclei -- hydrogen, deuterium, tritium, and/or helium -- and releasing the extra power held within their nuclear bonds. This is in contrast to nuclear fission, the principle by which all existing nuclear power plants operate, whereby power is generated by splitting apart heavy nuclei like uranium, plutonium, or thorium. Nuclear fusion has the potential to generate more power than nuclear fission, not to mention being much cleaner -- the only byproduct of the reaction is water. Fusion power has been hailed as the Holy Grail of energy research, so achieving commercial fusion power generation has long been a goal of energy researchers, though even the most optimistic among them do not expect the technology to be available before 2030, with 2050 as a more realistic estimate. ITER is a step in this direction.

ITER is a tokamak design, a Russian fusion reactor design that is a torus. The torus is wrapped with powerful magnetic coils, trapping a plasma (ionized gas) within. This plasma is heated up to great temperatures -- over 100 million degrees Kelvin -- using ohmic heating; the same mechanism that heats up a wire if it has excessive electric current running through it. At around this temperature, the nuclei begin to fuse, releasing energy. If conditions are right, a nuclear chain reaction is initiated -- like in a fission reactor, not like in an atom bomb -- and power is produced. If the experiments with ITER are successful, it could mean great things for nuclear fusion.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated WiseGeek contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.
Discussion Comments
Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated WiseGeek contributor and brings his expertise in paleontology, physics, biology,...
Learn more
Share
https://www.wisegeek.net/what-is-iter.htm
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.