We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Physics

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What is Brownian Motion?

Michael Anissimov
By
Updated: May 17, 2024
Views: 41,369
Share

Brownian motion is a phenomena whereby small particles suspended in a liquid tend to move in pseudo-random or stochastic paths through the liquid, even if the liquid in question is calm. It is the result of asymmetry in the kinetic impacts of molecules that make up the liquid. The liquid phase, by definition, must have some temperature, meaning its molecules or atoms must be thermally excited, bumping into each other and objects suspended within them. To picture this phenomena, a person can imagine the motion of golf balls on a table filled with thousands of ball bearings moving in quick trajectories.

The phrase Brownian motion can also refer to mathematical models used to describe the phenomenon, which have considerable detail and are used as approximations of other stochastic motion patterns. The mathematical motion is related to, but more structured than, the random walk, in which the displacement of a particle is entire randomized. The phenomena has the Markov property, a term from probability theory which means that the future state of the particle is determined entirely by its current state, not by any past state. Used in this sense, the mathematical concept is slightly different, but very similar to, physical Brownian motion.

The scientist who made Brownian motion famous is Albert Einstein, who brought the phenomenon to the attention of the larger physics community by publishing a paper on it in 1905, his personal annus mirabilis or "wonderful year." The phenomenon was observed as early as 1765, but not described or studied in detail until the botanist Robert Brown's research in 1827,and it is named in honor of his work. As a botanist, Brown first observed the effect in pollen floating in water, where it is visible with the naked eye. Through experimentation, Brown determined that the specks of pollen were not propelling themselves independently, but rather that their motion was pseudo-random.

Jean Perrin, a French physicist who later won the Nobel prize, springboarded off of Einstein's work. Using Brownian motion as evidence, in 1911 he proved once and for all that matter is made of atoms and molecules. Although atomic theory is originally credited to John Dalton, the 18th- and 19th-century British physicist, it was under dispute for over a century, and it was Perrin's work that resulted in its universal acceptance.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Michael Anissimov
By Michael Anissimov
Michael Anissimov is a dedicated WiseGeek contributor and brings his expertise in paleontology, physics, biology, astronomy, chemistry, and futurism to his articles. An avid blogger, Michael is deeply passionate about stem cell research, regenerative medicine, and life extension therapies. His professional experience includes work with the Methuselah Foundation, Singularity Institute for Artificial Intelligence, and Lifeboat Foundation, further showcasing his commitment to scientific advancement.

Editors' Picks

Discussion Comments
By pursuits — On Nov 23, 2013

How does the force and motion relate to making a simple machine?

By dboyd — On Feb 12, 2011

Can brownian motions be described as 'white noise' from a mathematical statistics/econometrics perspective?

By anon129576 — On Nov 24, 2010

Has anybody a numerical example on Brownian motion? --Mark P

By anon61786 — On Jan 22, 2010

first of all bactria are tiny warm organisms so they move at huge speed and behave as particles of liquid. after that they move in random motion.

By anon16524 — On Aug 08, 2008

why is brownian motion is generally seen when bacteria are observed in liquid media?

Michael Anissimov
Michael Anissimov
Michael Anissimov is a dedicated WiseGeek contributor and brings his expertise in paleontology, physics, biology,...
Learn more
Share
https://www.wisegeek.net/what-is-brownian-motion.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.