We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.

What is a Data Mining Classification?

By Emma G.
Updated May 17, 2024
Our promise to you
WiseGeek is dedicated to creating trustworthy, high-quality content that always prioritizes transparency, integrity, and inclusivity above all else. Our ensure that our content creation and review process includes rigorous fact-checking, evidence-based, and continual updates to ensure accuracy and reliability.

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

Editorial Standards

At WiseGeek, we are committed to creating content that you can trust. Our editorial process is designed to ensure that every piece of content we publish is accurate, reliable, and informative.

Our team of experienced writers and editors follows a strict set of guidelines to ensure the highest quality content. We conduct thorough research, fact-check all information, and rely on credible sources to back up our claims. Our content is reviewed by subject-matter experts to ensure accuracy and clarity.

We believe in transparency and maintain editorial independence from our advertisers. Our team does not receive direct compensation from advertisers, allowing us to create unbiased content that prioritizes your interests.

Data mining classification is one step in the process of data mining. It is used to group items based on certain key characteristics. There are several techniques used for data mining classification, including nearest neighbor classification, decision tree learning, and support vector machines.

Data mining is a method researchers use to extract patterns from data. Generally a representative sample is chosen from the pool of data and then manipulated and analyzed to find patterns. In addition to data mining classification, researchers may also use clustering, regression, and rule learning to analyze the data.

There are several algorithms that can be used in data mining classification. Nearest neighbor classification is one of the simplest of the data mining classification algorithms. It relies on a training set. A training set is a set of data used to train the computer into paying attention to certain variables. In nearest neighbor classification, the computer simply classifies all data as part of the group that contains data closest in value to the input.

Decision tree learning uses a branching model to classify the data. The computer basically asks a series of questions about the data. If the answer to the first question is true, it asks question 2a. If the answer is false, it asks question 2b. When drawn out, this method forms a tree of branching paths.

Naive Bayes classification relies on probability. It asks a series of questions about each piece of data and then uses the answers to determine the probability that the data belong in a particular classification. This is different from decision tree learning because the answer to the first question does not influence which question will be asked next.

More complicated methods of data mining classification include neural networks and support vector machines. These methods are computer-based models that would be difficult to do by hand. Neural networks is often used in artificial intelligence programming because it mimics the human brain. It filters information through a series of nodes that find patterns and then classify the information.

Support vector machines use training samples to build a model that will classify information, usually visualized as a scatter plot with a wide space between categories. When new information is fed into the machine, it is plotted on the graph. The data are then classified based on which category the information falls closest to on the graph. This method works only when there are two options to choose from.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Discussion Comments
By hamje32 — On Dec 24, 2011

@nony - All I know about neural networks is that they enable a computer to “learn.” As a neural network receives inputs it begins to notice, if you will, patterns about the data, and that enables it to learn.

I can certainly see how this would be useful in both machine learning and data mining. After all what are we trying to do with data mining? We are trying to turn data into information.

So this involves some learning, doesn’t it? I think computers are better at noticing patterns than we are. But I can’t say I’ve seen neural networks in use, only that it makes sense in principle.

By nony — On Dec 23, 2011

@Charred - Has anyone ever seen how these neural networks actually work in relation to data mining? I’ve never really understood neural networks and can’t wrap my head around how they would work with data mining.

Frankly, it sounds like a bit of overkill. I’ve heard of neural networks being used in artificial intelligence and computer game engines so I don’t understand how they would fit into the data mining methodologies.

By Charred — On Dec 23, 2011

@allenJo - I would think that the nearest neighbor algorithm would be the easiest of the data mining concepts to work with. My understanding is that with this algorithm you are just taking a record and comparing it with other records. As a result you find sets of related data and then you can cluster them.

At a company I worked for one of the reporting people used this method for his analysis and he produced clustering diagrams which showed the related information. It was interesting to look at and seemed to produce meaningful information.

Also, I think from a programming perspective it was the easiest of the algorithms since it just involved a simple comparison. The only problem I saw with it was it would do well for small data sets but it would be impractical for larger data sets, where you were for example comparing thousands upon thousands of records.

By allenJo — On Dec 22, 2011

I’ve worked with data mining tools in the past to find patterns in mountains of customer sales and revenue data. I find the Naive Bayes classification to be the most interesting and useful tool in my opinion.

It’s like playing a game of 21 questions where you ask one question after another, whereby you gradually limit the number of possible answers for what kind of data you’re looking at. The final answer in this case would be the classification of what the data might belong to.

The difference of course is that you don’t ask 21 questions – you might ask more or less, depending on the data that you’re working with.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.