We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Industry

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What are the Basics of Worm-Gear Design?

By Jeremy Laukkonen
Updated: May 17, 2024
Views: 6,713
Share

The worm-gear design involves one helical gear, the teeth of which form segments of a helix, and another component that resembles a screw. The screw-like component is known as a worm, and its threads typically form a complete helix. This worm is typically used to drive the gear, which can provide a great deal of torque. In most cases, attempting to use the gear to turn the worm will result in the teeth locking. Both of these basics of worm gear-design can be exploited in the tuning knobs of stringed instruments, which provide the torque necessary to pull the strings taught and then automatically lock in place to keep them that way.

Helical gears resemble spur gears, but they have diagonally arranged teeth. Due to the curved nature of gears, this results in each individual tooth resembling a segment cut out of a helix. Traditional helix sets use two gears, though the worm-gear design is a variant that does not. Instead, these use one helical gear and a cylinder or rod that has a screw-like thread on it. This worm can have a single tooth that wraps around the circumference only once, two teeth that span the entire length like a normal screw, or anything in between.

The main benefit of worm-gear design is that a large amount of torque can be achieved compared to other helical gears. Gear ratios for helical sets are usually limited to about 10:1, and worm-gear sets can achieve up to a 500:1 ratio. Due to the nature of worm-gear design, each full rotation of the worm only moves the gear forward one tooth, so the gear reduction is technically limited only by how many teeth the driven gear has. A driven gear with 12 teeth would result in a 12:1 ratio, one with 120 teeth would have a 120:1 ratio, and so on.

Another basic of worm-gear design is the way that the sets tend to self-lock. Many worm-gear sets have teeth on the gear that have a very small lead angle, which means they are close to being 90 degree parallel teeth, such as can be found in on normal spar gears, instead of the sharply angled diagonal teeth used by helical gears. If the gear has a small lead angle, then the gear will tend to lock against the teeth of the worm instead of turning it. In some cases, this is a desirable outcome that can be exploited to the benefit of a device. This locking action can prevent undesired movement of the system due to external forces on the gear, such as a tensioned string or gravity.

Share
WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.

Editors' Picks

Related Articles

Discussion Comments
Share
https://www.wisegeek.net/what-are-the-basics-of-worm-gear-design.htm
Copy this link
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.