We are independent & ad-supported. We may earn a commission for purchases made through our links.
Advertiser Disclosure
Our website is an independent, advertising-supported platform. We provide our content free of charge to our readers, and to keep it that way, we rely on revenue generated through advertisements and affiliate partnerships. This means that when you click on certain links on our site and make a purchase, we may earn a commission. Learn more.
How We Make Money
We sustain our operations through affiliate commissions and advertising. If you click on an affiliate link and make a purchase, we may receive a commission from the merchant at no additional cost to you. We also display advertisements on our website, which help generate revenue to support our work and keep our content free for readers. Our editorial team operates independently of our advertising and affiliate partnerships to ensure that our content remains unbiased and focused on providing you with the best information and recommendations based on thorough research and honest evaluations. To remain transparent, we’ve provided a list of our current affiliate partners here.
Science

Our Promise to you

Founded in 2002, our company has been a trusted resource for readers seeking informative and engaging content. Our dedication to quality remains unwavering—and will never change. We follow a strict editorial policy, ensuring that our content is authored by highly qualified professionals and edited by subject matter experts. This guarantees that everything we publish is objective, accurate, and trustworthy.

Over the years, we've refined our approach to cover a wide range of topics, providing readers with reliable and practical advice to enhance their knowledge and skills. That's why millions of readers turn to us each year. Join us in celebrating the joy of learning, guided by standards you can trust.

What Are Microscope Objectives?

Andrew Kirmayer
By
Updated: May 17, 2024

Microscopes are often used so objects too small for the eye to see can be visualized. They are typically suitable for scientific analysis of materials as well as the study of biological samples at the cellular level. The light from a sample on a glass slide first passes through the microscope objectives, which determine the resolution of the images produced. Multiple objectives can be incorporated into a microscope to provide the desired magnification. These microscope parts are generally constructed with an outer casing and a series of lenses inside.

To build microscope objectives, a series of small lenses are typically mounted inside of a cylinder. The assembly is then usually placed in a barrel, and a metal rim is placed at the end to lock the lens or a few of them in the objective. Spacers and screws are often used to adjust the focus and image quality. The microscope resolution limit is usually dependent on the wavelength and angle of the light captured by the objective, while the refraction between the front lens and the observed specimen can affect clarity.

Magnification level, refractive index, and other details on the use of the objective are often inscribed on the outer barrel. Inscriptions can also say what the optimal thickness of the cover glass over the slide should be for a clear image. Some microscope objectives are used in dry conditions, while others require some oil to be placed between the lens and the specimen; this is often indicated on the outside as well. Focal length and the type of objective can also be shown.

Microscope objectives typically feature characteristics such as depth of field, the range of focus in which an image’s sharpness is the same. Usually the wider the lens opening, or aperture, of the objective, the lower the depth of field value is. Other significant aspects include the working distance, or the space between the front lens and the cover glass, or the specimen if there is no covering. In microscope objectives that are designed to work close to the sample, a mechanism called a retraction stopper can lock the units in place, and prevent materials such as oil from being spread along the slide.

Optical errors are often avoided when microscope objectives include corrective elements independent of the eyepiece. Antireflective coatings are often placed on objective lenses as well, to transmit light rays more efficiently. The size of the exit pupil, at the rear aperture of the objective, can restrict the light that passes through; a smaller opening typically reduces the illumination and therefore the image quality.

WiseGeek is dedicated to providing accurate and trustworthy information. We carefully select reputable sources and employ a rigorous fact-checking process to maintain the highest standards. To learn more about our commitment to accuracy, read our editorial process.
Andrew Kirmayer
By Andrew Kirmayer
Andrew Kirmayer, a freelance writer with his own online writing business, creates engaging content across various industries and disciplines. With a degree in Creative Writing, he is skilled at writing compelling articles, blogs, press releases, website content, web copy, and more, all with the goal of making the web a more informative and engaging place for all audiences.
Discussion Comments
Andrew Kirmayer
Andrew Kirmayer
Andrew Kirmayer, a freelance writer with his own online writing business, creates engaging content across various...
Learn more
Share
https://www.wisegeek.net/what-are-microscope-objectives.htm
WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.

WiseGeek, in your inbox

Our latest articles, guides, and more, delivered daily.